OCR Oxford Cambridge and RSA		
day June 20XX – Mornin	g/Afternoon	
A Level Further Mathematics A Y543 Mechanics		
SAMPLE MARK SCHEME		Duration: 1 hour 30 minutes
MAXIMUM MARK 75		
	S	

This document consists of 12 pages

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This guestion included the instruction: In this guestion you must show detailed reasoning.

June 20XX

2. Subject-specific Marking Instructions for A Level Further Mathematics A

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
 If you are in any doubt whatsoever you should contact your Team Leader.
- c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

June 20XX

d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only – differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for *g*. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

June	20XX
------	------

	Question	Answer	Marks	AO	Guidan	ce		
1	(i)		M1	1.1	Differentiating one term of v correctly			
		$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = 2t\mathbf{i} - \frac{10}{\left(2t+1\right)^2}\mathbf{j}$	A1	1.1				
		$\mathbf{F} = m\mathbf{a} = 4t\mathbf{i} - \frac{20}{\left(2t+1\right)^2}\mathbf{j}$	A1FT	3.3	FT their a			
			[3]					
1	(ii)		M1	3.4	Attempt at scalar product	OR		
						M1 at $t = 4$		
		$\mathbf{F.v} = 4t(t^2 - 3) - \frac{100}{(2t+1)^3}$	A1	1.1		$\mathbf{A1}\mathbf{F}\cdot\mathbf{v} = \left(16\mathbf{i} - \frac{20}{81}\mathbf{j}\right)\cdot\left(13\mathbf{i} + \frac{5}{9}\mathbf{j}\right)$		
		Power is 208 W	A1	1.1	207.86282			
			[3]					
1	(iii)	$T = \frac{1}{2}m\mathbf{v} \cdot \mathbf{v} = (t^2 - 3)^2 + \frac{25}{(2t+1)^2}$	B1	3.4		OR B1 for value of <i>T</i> at 2 or 4		
			M1	1.1	T(4) - T(2)	M1 $T(4) - T(2)$		
		Work done is 167 J	A1	1.1	167.308642			
			[3]					

	Questio	0 n	Answer	Marks	AO	Guidan	ice
2	(i)			M1	3.3	Attempt at conservation of energy	
			$1(10)(2)^2 = 10800x^2$	A1	1.1	GPE term(s)	GPE is Gravitational Potential
			$75g(6.2) + \frac{-(75)(2)^2}{2} = 75g(1.2 - x) + \frac{2}{2(1.2)}$	A1	1.1	KE term	Energy
				A1	1.1	EPE term	KE is Kinetic Energy
							EPE is Elastic Potential Energy
			$300x^2 - 49x - 255 = 0$	E1	2.1	www; AG must show intermediate	
						step	
				[5]			
2	(ii)		x = -0.8438977 < 0 so not valid	B1	2.3	The negative value of <i>x</i> must be seen	
						and not given as a final answer	
			x = 1.01	B1	3.4		1.007231
				[2]			
2	(iii)		e.g. $g = 9.8$ is not precise enough, use $g = 9.81$	E1	3.5b	For one assumption and a sensible	
			e.g. the army recruit is not a particle, model as a	E1	3.5c	refinement	
			rigid body				
			e.g. the mat is not a single spring, model as				
			multiple springs				
				[2]			
3	(i)			M1	3.3	Integrating one term of <i>F</i> correctly	
			$I = \int t^2 + 3e^t dt = \frac{1}{3}t^3 + 3e^t$	A1	1.1		
			$I = \int_{-1}^{4} E dt = \frac{55}{2} \pm 3e^4 = 182$, so impulse is 182 Ns	A1	1.1	BC	182.1277
			$I = J_0 I u = \frac{1}{3} + 5c = 102$, so impulse is 1021(s)				
				[3]			
3	(ii)		$2(v-5) = \frac{55}{3} + 3e^4$	M1	3.4	Use of $I = mv - mu$	
			Speed is 96.1 m s ⁻¹	A1	1.1		96.0638
				[2]			

Y543

Y543

	Question		Answer	Marks	AO	Guidance	
4	(i)			M1	3.3	Attempt at conservation of mechanical	
						energy	
			$35a(5) - \frac{1}{2}(35)v^2 -$	A1	1.1	PE term on lhs	
			$338(3)$ $2^{(33)}$ $2^{(33)}$	A1	1.1	KE term on rhs	
			$35g(7-4\cos\theta)$	A1	1.1		
			$v^2 = 4g(2\cos\theta - 1)$	E1	2.1	www; AG must show an intermediate	
				[5]		step	
4	(ii)		When $\theta = 0^\circ$, $v_H = 2\sqrt{g}$	B1	3.3		6.260990
			$v_V^2 = 2g(3)$	B 1	3.3		
				M1	3.4	Use of either $v^2 = v_V^2 + v_H^2$ or	
						$\tan \theta = \frac{v_V}{v_H}$	
			$v = 9.90$ so speed is $9.90 \mathrm{m s^{-1}}$	A1	1.1		9.8994949
			$\theta = 50.8^{\circ}$ below the horizontal	A1	1.1		50.768479
				[5]			
4	(iii)		Tension when $\theta = 60^{\circ}$ is 17.5g N	B 1	1.1	May appear anywhere in answer	
				*M1	3.1b	Attempt to use N2L radially with	N2L is Newton's second law
						$a = \frac{v^2}{r}$	
			$T - 35g\cos\theta = \frac{35}{4} \left(4g \left(2\cos\theta - 1 \right) \right)$	A1	1.1		
				dep*	1.1a	Substituting $3 \times \text{their}(T)$ into their	
				M1		N2L attempt and solving for θ	
			$\theta = 33.6^{\circ}$	A1	1.1	BC	33.55730
				[5]			

PMT

	Question		Answer	Marks	AO	Guidance	
5	(i)	(a)	$m\frac{\mathrm{d}v}{\mathrm{d}t} = -mg - \left(-6mv + mv^2\right)$	B1	3.3		
			$\frac{\mathrm{d}t}{\mathrm{d}t} = -\frac{1}{2}$	M1	1.1	Divide by <i>m</i> and rearrange	
			$dv = v^2 - 6v + 9.8$		0.1		
			$=-\frac{1}{(1-1)^2}=-$	EI	2.1	AG Completing the square in the	
			$(v-3)^2 - 9 + 9.8$ $(v-3)^2 + 0.8$			denominator	
				[3]			
5	(i)	(b)	$t = -\int \frac{dv}{dv}$	M1	3.1a	Separation of variables	
			$\int (v-3)^2 + 0.8$				
			$\int_{0}^{0} dy$	B1	3.4	Using the limits correctly at least once	
			$t_1 = -\int_{8,25} \frac{dv}{(v-3)^2 + 0.8}$, and				
			C^0				
			$t_2 = -\int_{8.75} \frac{\mathrm{d}v}{\left(v-3\right)^2 + 0.8}$				
			$t_1 = 2.9997903$	A1	1.1	BC	Or use
							$\int \frac{1}{dx} = \frac{1}{dx$
							$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} tan \left(\frac{1}{a}\right)$
			$t_2 = 3.0159247$	A1	1.1	BC	
			2.9997 < <i>t</i> < 3.0159 so <i>B</i> 's model for the	E1	2.2b	Indication that the non-exact nature of	
			vast majority of speeds in the interval			the initial speed leads to a result that is	
			(8.5 ± 0.25) m s ⁻¹ does produce a value of t			likely to be correct	
			greater than 3 so it is extremely likely (but not				
			certain) that B's model is consistent with the				
			time recorded by A.				
1				[5]			

Mark Scheme

Y543

	Questio	n	Answer	Marks	AO	Guidance
5	(ii)		e.g. student <i>C</i> 's claim is incorrect as they have assumed that the differential equation for the motion of the particle is the same in both directions	B1	2.2a	For explaining that the differential equation of motion is not the same in each direction
			In fact the differential equation for when the particle is falling is given by $mg - (-6mv + mv^{2}) = m\frac{dv}{dt}$	B1 B1	2.3 3.3	For either this corrected model or stating that the two forces in the vertical direction are now acting in opposite directions
			$-\int_{0}^{1} \frac{1}{(v-3)^2 - 18.8} \mathrm{d}v$	[3]		
				0	3	

Y543

_

	Question	Answer	Marks	AO	Guidance		
7	(i)		M1	1.2	Attempt to integrate to find area	Limits not required for M mark	
		$A = \int_0^{\ln 32} e^{0.8x} dx = \frac{75}{4}$	A1	1.1	BC	$\left[1.25\mathrm{e}^{0.8x}\right]_0^{\ln 32}$	
		$4\overline{x} = \int^{\ln 32} x e^{0.8x} dx$	M1	3.1a	Use integration by parts		
		$Ax - \int_0 xe^{-x} dx$	A1	1.1	Correctly applied to end of first stage		
		$= \left[1.25xe^{0.8x}\right]_0^{\ln 32} - 1.25 \int_0^{\ln 32} e^{0.8x} dx$					
		$= \left[1.25xe^{0.8x} - 1.5625e^{0.8x}\right]_0^{\ln 32}$	A1	1.1			
		$= (20\ln 32 - 25) - (0 - 1.5625) \Longrightarrow \overline{x} = \dots$	M1	1.1	Using correct limits and $\overline{x} = \frac{A\overline{x}}{x}$		
		$\overline{x} = \frac{16}{3} \ln 2 - \frac{5}{4}$	E1	2.1	www; AG		
			[7]				
7	(ii)		M1	2.1	For $\dots \frac{1}{2} \int y^2 dx$ and attempt to		
					integrate		
		$A\overline{y} = \frac{1}{2} \int \left(e^{0.8x} \right)^2 dx = \frac{1275}{2}$	A1	1.1	BC	$1 \left[e^{1.6x} \right]^{\ln 32}$	
		$119 \ 2 \ J_0 \ (C \) \ dt \ 16$	0			$\frac{1}{2} \left[\frac{3}{1.6} \right]_0$	
		$\overline{y} = \frac{17}{4}$ oe	A1	1.1			
			[3]				
7	(iii)		M1	3.1a	Table of values idea to get an		
			241		equation/expression		
			IVI I	2.1	Attempt at $\operatorname{cur}(\overline{a})$ (8)(16)($\operatorname{tr} 22$) $\operatorname{cur}(4\overline{a})$		
					cv(x) = (8)(16)(1632) - cv(Ax)		
		$X\left(16\ln 32 - \frac{75}{4}\right) = (8)(16)(\ln 32) - \left(\frac{17}{4} \times \frac{75}{4}\right)$	A1FT	1.1			
		$\overline{X} = 9.92$	A1	1.1	9.915779		
			[4]				

Assessment Objectives (AO) Grid

Question	AO1	AO2	AO3(PS)	AO3(M)	Total]
1(i)	2	0	0	1	3	1
1(ii)	2	0	0	1	3	1
1(iii)	2	0	0	1	3	
2(i)	3	1	0	1	5	
2(ii)	0	1	0	1	2	
2(iii)	O	0	0	2	2	
3(i)	2	0	0	1	3	
3(ii)	1	0	0	1	2	
4(i)	3	1	0	1	5	
4(ii)	2	0	0	3	5	
4(iii)	4	0	1	0	5	
5(i)(a)	1	1	0	1	3	
5(i)(b)	2	1	1	1	5	
5(ii)	O	1	0	2	3	
6(i)	4	1	1	2	8	
6(ii)	1	1	2	0	4	
7(i)	5	1	1	0	7	
7(ii)	2	1	0	0	3	
7(iii)	2	1	1	0	4	
Totals	38	11	7	19	75	

PS = Problem Solving M = Modelling • ر